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We present results from an experimental and numerical investigation into the 
dynamics of the interaction between a planar vortex pair or axisymmetric vortex 
ring with lengthscale a and circulation rencountering a planar interface of thickness 
6 across which the fluid density increases from p1 to p2.  Similarity considerations 
indicate that baroclinic generation of vorticity and its subsequent interaction with 
the original vortex is governed by two dimensionless parameters, namely (a /&)  A and 
R ,  where A = (p2 -p1) / (p2+p1)  and R = ( a 3 g / f 2 ) .  For thin interfaces (6 < a ) ,  the 
interaction is governed only by the parameters A and R. Furthermore, in the 
Boussinesq limit (A  + 0 ) ,  the dynamics are governed solely by the product AR and 
the interaction is entirely invertible with respect to the initial locations and direction 
of propagation of the vortices. We document details of the interaction dynamics in 
the Boussinesq limit over a range of the parameter AR. Results show that, for 
relatively small values of AR, rather than the vortex simply rebounding a t  the 
interface, its outermost layers are instead successively ‘peeled ’ away by baro- 
clinically generated vorticity and form a topologically complex backflow in which 
the ring fluid, the light fluid and the heavy fluid are intertwined. For larger values 
of AR the vortex barely penetrates the interface, and our results suggest that in the 
limit AR+ GO the interaction with a density interface becomes similar to the 
interaction a t  a solid wall. We also present results for thick interfaces in the 
Boussinesq limit, as well as larger density jumps for which the density parameter A 
enters as a second similarity quantity. Comparison of the experimental and 
numerical results demonstrate that many of the features of such interactions can be 
understood within the context of inviscid fluids, and that inviscid vortex methods 
can be used to accurately simulate the dynamics of such interactions. 

1. Introduction 
The dynamics of vorticity in uniform density fluids are fairly well established, and 

a variety of numerical techniques generally referred to under the collective term 
‘vortex methods’ can be used to simulate many features of such flows. In  particular, 
understanding of the dynamics of vorticity in two-dimensional flows of a uniform 
density fluid has matured to the point that accurate numerical simulation of many 
experimentally observed phenomena can be routinely done. A review of some of 
these phenomena is presented by Saffman & Baker (1979), and Leonard (1980) gives 
an overview of vortex methods for numerically simulating such two-dimensional 
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homogeneous flows. Progress is also being made in the development of vortex 
methods for axisymmetric and fully three-dimensional flows with uniform density. 
Some of these methods are reviewed by Leonard (1985). 

However, many practical circumstances involve the dynamics of vorticity in fluids 
with non-uniform density. In flows of this type, vorticity can be generated in regions 
of non-zero density gradient when the centre of mass of a given fluid element does 
not coincide with the centre of force resulting from the pressure and viscous stresses 
acting over its surface. The subsequent interactions between the original vortical 
flow and the generated vorticity can give rise to entirely different dynamical 
phenomena. Such interactions are common both in nature and in technological 
applications. Examples include shock-wave interactions with vorticity, the inter- 
action of a turbulent flow with a flame front, the motion of convective thermals 
encountering an atmospheric inversion layer, the interaction of a ship wake with a 
thermocline, etc. Much of the work to date on the dynamics of vorticity in flows with 
non-uniform density has centred on free-surface flows and on interfacial instabilities 
such as the Rayleigh-Taylor instability and the fingering instabilities in Hele-Shaw 
flow, In these cases, the vorticity is essentially confined to the interface and the 
remaining fluid is irrotational. However, the types of flows referred to above involve 
the direct interaction of a vortical flow with a density inhomogeneity. Previous 
investigations into this class of flows appear to have been largely motivated by 
interest in relatively weak atmospheric stratification on the propagation and 
development of aircraft trailing vortices. For example, Saffman (1972) describes the 
motion of a vortex pair in a weakly stratified fluid, for which Hill (1975) presents 
numerical calculations using vortex elements. Hecht et al. (1980, 1981) give 
computational results based on closure modelling of turbulent vortex pairs and rings 
propagating through various stratification conditions. Sarpkaya (1983) describes 
experiments which include the propagation of trailing vortex pairs through a 
stratified medium, and Maxworthy (1977) presents results from an experiment on the 
motion of a turbulent vortex ring propagating through a fluid with a very weak 
uniform density gradient. 

In contrast, relatively little work has been reported for the interaction of vorticity 
with comparatively sharp density gradients. The case when the density jump is large, 
and in particular when the interface is a free surface with effectively zero density on 
one side, has received some attention (Saffman 1979). Krauch (1980) and Cerra & 
Smith (1983) have reported experimental results for a vortex ring rising toward a 
free surface, and Sarpkaya (1983) gives experimental results for the interaction of 
trailing vortex pairs with a free surface. Such Sree-surface interactions have also been 
addressed computationally (e.g. Tryggvason 1 9 8 8 ~ ) .  Linden (1973) presents some 
experimental results for turbulent vortex rings encountering weak density interfaces, 
but does not elaborate on any details of the interaction dynamics. 

Here we examine in detail the dynamics resulting from the interaction of vorticity 
with a relatively sharp density interface. The principal goals are to understand the 
mechanisms by which baroclinically generated vorticity interacts with vorticity 
already present in the flow and to document some of the dynamical features 
encountered in such interactions. In  order to study the interaction in as controlled 
a setting as possible, we concentrate on two relatively simple vortical flows, namely 
the planar laminar vortex pair and the axisymmetric laminar vortex ring, and 
examine their interaction with a planar density interface. The dynamics of thin- 
cored vortex pairs and rings in the absence of any density interface are relatively well 
understood. For example, Lamb (1945) and Batchelor (1967) describe the 
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characteristics of inviscid vortex pairs and rings. Saffman (1970) and Fraenkel(l970) 
give the propagation velocity of the inviscid ring for arbitrary but small core 
structures and Saffman (1970) also examines the effects of growth of the vortical core 
by viscous diffusion. Magarvey & MacLatchy (1964a), Maxworthy (1972, 1977) and 
Sullivan, Widnall & Ezekiel (1973) present experimental results for the formation, 
structure and propagation of viscous vortex rings. Yih (1975) has given analytical 
solutions for internally stratified vortex pairs and rings moving in a homogeneous 
fluid. Observations of the instability of vortex rings are presented, for example, by 
Krutzsch (1936, 1939) and Maxworthy (1977). Some of the stability characteristics 
of vortex rings are described by Tomokita (1936), Widnall & Sullivan (1973), 
Widnall, Bliss & Tsai (1974) and Saffman (1978). The corresponding stability of 
planar vortex pairs has been analysed by Crow (1970), and the effect of a strain field 
on the stability of a vortex filament is given by Moore & Saffman (1975). 

In  this study, we are mainly concerned with interfaces across which there is a 
relatively small density change. We use laboratory experiments to identify the 
underlying dynamical phenomena associated with the interaction of a vortex ring 
with a density interface. These results are also used to evaluate the capabilities of 
numerical techniques based on inviscid vortex methods for simulating these 
phenomena. The numerical simulations allow important details of the interaction to  
be investigated that are not directly accessible in the laboratory experiments, and 
allow exploration of parameter ranges that are beyond the reach of the experiments. 
A brief account of some of the work presented here was given at  the 40th Annual 
Meeting of the Division of Fluid Dynamics of the American Physical Society (Dahm 
& Scheil 1987 ; Tryggvason 1987). 

The paper is organized as follows. In  $2 we introduce the relevant similarity 
parameters and discuss several limiting cases of particular interest. In $3 we describe 
the experimental and numerical techniques used, and in $4 present results for the 
interaction of axisymmetric vortex rings and planar vortex pairs with a planar 
density interface. A discussion of some of these results as well as conclusions are given 
in $5. 

2. Similarity considerations 
Figure 1 shows a schematic of the general problem being considered. A planar 

vortex pair with spacing a, or an axisymmetric vortex ring with diameter a, and with 
circulation r and a characteristic core dimension encounters an interface of 
thickness 6 across which the fluid density increases from p1 to  p2. The flow is taken 
to be incompressible and governed by the Navier-Stokes equations 

-Dii .. 
p - =  -wp- - p g f + p V i i ,  

Dt 

where the tildes denote dimensional variables. The viscosity ,u is taken to be uniform. 
The pressure can be eliminated by taking the curl of (l) ,  yielding the vorticity 
transport equation 

DC5 - Q‘p“ DIZ e’p” - 
- = (6. q a - ,  x --9: x j +  V V 2 6 ,  

Dt” P Dt” P 

where the second and third terms on the right-hand side give the generation of 
vorticity resulting from pressure gradients and viscous stress gradients in an 
inhomogeneous fluid. When viscous effects are unimportant, these terms give the 
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FIGURE 1. Kotation for a planar vortex pair or an axisymmetric vortex ring, with circulation r a n d  
characteristic size a ,  approaching a planar interface with thickness S across which the fluid density 
changes from p1 to pz. When the density change across the interface is small (the Boussinesq limit), 
the interaction is identical regardless of whether the vortex moves downward towards the heavy 
fluid or upward toward the light fluid, and is determined entirely by the parameter AH in ( 5 ) .  

vorticity produced by the hydrodystatic and hydrodynamic pressure gradients, 
commonly referred to as the baroclinic generation of vorticity. 

To identify the relative importance of the various physical processes accounted for 
in (2), the dimensional variables are scaled with r and a as 

2 = a x ,  t"= ( a 2 / r ) . t ,  li: = (T/~).u, 6 = ( r / a 2 ) . m ;  
where the untilded variables are dimensionless and of order 1. The density is scaled 
with p1 and pz as 

and the density gradient in the baroclinic terms can be scaled as 

where ri is a local unit normal vector relative to the interface. This scaling gives the 
vorticity transport equation as 

A similar scaling to characterize the surface tension T along the interface leads to the 
appropriate Weber number as 

This reasoning suggests that similarity would require matching at  least the four 
dimensionless paramctcrs in square brackets, in addition to the initial density 
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gradient profile f [ y / ( S / a ) ] .  Note that for vortex rings, the core parameter (crla) 
would also need to be matched, since in that case the diameter a and circulation f 
alone are not sufficient to characterize the motion (e.g. Lamb 1945 ; Batchelor 1967). 

Among the range of values which these dimensionless parameters can assume, 
there are several limiting cases that are of particular physical significance and which 
are dominated by far less restrictive similarity requirements. For instance, when the 
Reynolds number ( r / v )  in (3) is large, the distance over which vorticity can diffuse 
on the timescale ( a Z / f )  of the vortical motion is small relative to the lengthscale a. 
Effects of vorticity diffusion would then be of only secondary importance, and 
similarity might be effectively achieveable without precisely matching the Reynolds 
number. In  such cases it may even be possible to understand many aspects of the 
interaction by treating the fluids as being inviscid. Similarly, the effects of surface 
tension on the resulting interaction dynamics can also be expected to be relatively 
unimportant if the Weber number is sufficiently large. In  the remainder of this 
section, we examine the parameters controlling the dynamics under conditions for 
which the effects of viscosity and surface tension are negligible. 

2.1. Thin interfaces (&/a + 0) 
When the interface thickness I3 is small in comparison with the lengthscale a of the 
vortieal motion, neither the precise interface thickness nor the details of the density 
or vorticity profiles within i t  should be important, and only the resulting circulation 
density along the interface should be dynamically relevant. Formally, as (S/a) + 0 
the density profile approaches a step function while the density gradient approaches 
a delta function 6(n) a t  the interface, where n is a local interface normal coordinate. 
Equation (3) can then be written as 

which could be integrated across the interface to give the circulation density 
explicitly. The interaction with a thin interface is therefore governed by the two 
dimensionless parameters 

The first of these is simply the Atwood number, and gives the dimensionless density 
jump across the interface. The second gives the ratio of the hydrostatic to 
hydrodynamic pressure gradients for baroclinic generation of vorticity, and is 
effectively the inverse Froude number. I n  terms of A and R, 

Dm Du 
- = (0-V) u + 2Aii x -&(n) +2ARii xjS(n) .  Dt Dt 

2.2. Weak vortices (R + 0 0 )  

Equation (6) describes the interaction of a vortex with arbitrary strength R 
encountering a thin interface with arbitrary strength A .  Of particular interest is the 
case when R is large so that the product AR is also large, namely when the 
hydrostatic pressure gradients are much larger than the hydrodynamic gradients. 
Since both sides in (6) must be of order 1 ,  the resulting interface slope tl x j  must then 
decrease like 1/AR to leading order. As a result, in the limit when AR+oo, the 
interface must remain flat (ii x j +  0) to leading order throughout the interaction. 
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This still admits the possibility that the product ARA x j +  constant, in which case 
baroclinic generation by the hydrostatic gradient will contribute to the interaction 
even though the interface is nominally flat. We examine this limit further in $4.6. 

2.3 .  Weak interfaces ( A  + 0) 

For many practical situations the density stratification is relatively weak. In  the 
limit as A -to, (6) reduces to 

Dm 
- = w-vu, 
Dt (7)  

which simply demonstrates that the total circulation due to baroclinic generation of 
vorticity on the timescale ( a 2 / f )  of the flow is small in comparison with r. As a result, 
on this timescale the vortex will propagate through the interface essentially 
undisturbed. Of course, on a much larger timescale, long after the vortex has 
penetrated through the interface, the baroclinic circulation will eventually become 
comparable to  r. 

This will remain the case except when R + 00, corresponding to a weak vortex 
encountering a weak interface, so that the product AR is no longer negligible. 
Equation (6) then reduces to 

D o  
~ = o . V u f 2 A R A  xj&(n), Dt 

which shows that essentially all the baroclinic generation in this limit is due to the 
hydrostatic pressure gradient only. The interaction is then determined by the single 
non-dimensional parameter AR.  This is simply the Boussinesq limit, since the density 
variations are only important when combined with gravity. Notice also that the 
Boussinesq limit contains a certain symmetry not preserved by the full equation (3). 
If we consider a flow where the vortices are in the heavy fluid and propagate up 
toward the interface, this would be equivalent to  replacing g by - g  and V p  by -Vp 
in the original flow. The net result is that the hydrostatic part of the baroclinic 
generation term in (3) remains unchanged. However, the hydrodynamic part changes 
sign, and so in general there is no similarity between these two flows. This will be true 
except in the Boussinesq limit given by (8), for which the hydrodynamic part is 
unimportant and as a result the evolution of both flows is identical. In  the 
experiments and numerical simulations in $4, we examine the dynamics of the 
interaction in the Boussinesq limit over a range of values of AR for the case where 
the vortices are propagating downwards in the light fluid. Owing to  the symmetry in 
this limit, the results are equally applicable to vortices propagating upward in the 
heavy fluid. 

3. Experimental and numerical methods 
In  this section we describe the experimental and numerical methods used to study 

the interaction of vortex pairs and rings with a planar density interface. In  practice, 
axisymmetric laminar vortex rings can be generated under very carefully controllable 
conditions in laboratory experiments, but practical difficulties associated principally 
with end effects render planar vortex pairs much more difficult to generate under 
similarly controllable conditions. Such vortex pairs can, however, be readily 
simulated using two-dimensional vortex methods. On the other hand, comparable 
simulations of vortex rings based on our current axisymmetric vortex method 
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require considerably more computational time. (Each of our two-dimensional 
simulations typically consume only about two minutes of CPU time on the SDSC 
Cray X-MP, while the axisymmetric simulations require more than half an hour.) By 
simulating two-dimensional vortex pairs we could investigate a larger number of 
cases for a relatively modest amount of computational time. For these reasons, the 
laboratory experiments have examined the interaction for vortex rings and the 
numerical simulations have focused largely on vortex pairs, though we also present 
a few results from axisymmetric simulations of vortex rings in $5. There are of course 
some differences in the dynamics of vortex pairs and rings, arising in large part from 
the importance of the detailed core structure even for thin-cored rings. However, 
since the core structure of the laboratory rings could not be precisely determined, 
conditions for the axisymmetric simulations could not be made identical to  those in 
the experiments. We present the combined results from our laboratory experiments 
and numerical simulations in $4, where their similarities and differences are 
discussed. 

3 .  1. Experimental technique 

The experiments detail the interaction of vortex rings with a planar density 
interface. In  all cases, the ring is formed from the light fluid and propagates 
downward through the light fluid towards the heavy fluid. Since these experiments 
are conducted entirely in the Boussinesq limit of small density parameter A ,  the 
results are also directly applicable to rings propagating upward toward a lighter 
fluid. In  this limit the parameter AR characterizes the interaction, as discussed in 
$2.3. However, in dealing with vortex rings the core size ( a / a )  also remains 
important, and as a result the association of a particular set of observed interaction 
dynamics with a particular value of AR must, strictly speaking, be limited to the 
specific core size used here. Nevertheless, the qualitative features of the resulting 
interaction dynamics should apply to a much larger class of such interactions. This 
is supported by results from the numerical simulations in $4.5. 

Axisymmetric laminar vortex rings are formed in these experiments by 
symmetrically discharging a volume of fluid through a round nozzle to form a thin 
cylindrical sheet of vorticity. The vortex sheet rolls up and develops into a stable ring 
that propagates away from the nozzle. The ring fluid is discharged through a 4 : 1 area 
ratio contoured axisymmetric nozzle by driving its free surface in a plenum with a 
high-pressure air stream metered through a micrometer-controlled, variable throat 
orifice held a t  sonic conditions with a constant upstream pressure (80 p.s.i.g.). The 
plenum was designed with a large cross-sectional area (46.6 em2) and a small volume 
(149.5 em3) to allow the ring fluid to be accelerated rapidly. A solenoid valve is 
opened and closed via a variable-delay timing circuit to initiate the flow. For a given 
upstream pressure, the area of the sonic metering orifice sets the air flowrate into the 
plenum, and the solenoid delay time (typically 50-100 ms) sets the total amount of 
air supplied to the plenum. This pneumatically-driven arrangement allows for a very 
low disturbance level and a high degree of symmetry in the vortex sheet generation 
and roll-up processes which form the ring. Furthermore, the sonic metering valve and 
timing delay circuit allow for very fine control and precise repeatability in the ring 
formation. 

Such a pressure-driven discharge system can, however, introduce oscillatory 
disturbances in the ring formation process if the spectral content of the pressure rise 
driving the ring fluid excites the natural frequency of the second-order system 
resulting from the compressibility of the air and the fluid mass in the plenum. In this 
facility, such oscillations have been effectively eliminated by scaling the system to 
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FIGURE 2. Typical axisymmetric laminar vortex ring generated in our experimental facility. The 
drive system ensures a very low disturbance level and a high degree of symmetry during the ring 
formation process, and allows for fine control and precise repeatability of the ring characteristics. 

have a relatively high natural frequency and suppressing high frequencies in the 
pressure rise with a fluid equivalent of a low-pass filter (an adjustable volume of air 
in parallel with the plenum) tuned until no oscillations are evident. 

The nozzle has an exit diameter of 3.9 cm and produces a ring with a centre-to- 
centre diameter a x 4.9 cm under all operating conditions. A typical ring is shown in 
figure 2.  The nozzle exit velocity can be inferred from the displacement with time of 
the free surface in the plenum, which is recorded with large magnification on cine film 
using a macro lens. The ring circulation r is then estimated as the integral of the exit 
velocity with time. Saffman (1978) discusses some of the potential errors involved in 
such indirect estimates of the absolute circulation. In  these experiments, however, 
the precise circulation for any given case is of lesser importance than its relation to 
other cases, and the present estimates are certainly adequate for this purpose. The 
resulting ring circulations range from 20 cmz/s to 160 cmz/s. A difficulty in 
generating rings with larger circulation is that  a secondary ring begins to form that 
slowly travels downward and can interfere in the interaction of the original ring 
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with the interface. The core size cr is much more difficult to  estimate, though for the 
technique used to generate the rings it appears reasonable to presume that (T will be 
of roughly the same order over this range of conditions. The corresponding Reynolds 
numbers (T/v) in (3) range from 2000 to 16000, and the parameter R in (5) ranges 
from 4.3 to 275. 

The reservoir into which the ring is introduced measures 30 cm on each side. The 
bottom half is filled with water mixed with salt or glycerine to  render it heavier than 
the layer of fresh water on top. The density ratio A in (5) ranges from 0.001 to 0.03. 
These values should be sufficiently small to satisfy the Boussinesq limit in $2.3 and 
the interaction should therefore be determined by thc parameter AR. Values of AR 
in these experiments cover the range from 0.014 to 1.20. To establish the interface, 
a water-soaked sheet of foam sponge material is placed on top of the heavy fluid and 
the light fluid then poured slowly onto i t ,  allowing the light fluid to  soak through 
with very little remaining momentum. As the tank fills, the foam floats on top of the 
light fluid and is finally removed, leaving behind two distinct fluid layers. This 
procedure allows us to routinely set up interfaces with thickness less than 2 mm 
(6 /a  < 0.04). By allowing the interface to diffuse for varying lengths of time, 
interfaces with differing thicknesses but having the same density gradient profile 
f [y/(S/a)] can be investigated. For example, after approximately 26 h the interface 
achieves a thickness of about 5 cm (&/a z 1) .  Since the aqueous salt or glycerine 
mixtures are miscible with water, surface tension effects are negligible. Also, since the 
timescale on which gravity waves generated by the interaction propagate along the 
interface and reflect a t  the walls far exceeds the duration of the interaction, such 
waves do not interfere with the interaction. 

The fluid moving with the vortex ring is made visible by dyeing the plenum fluid. 
In some cases we use food colour dye to allow observation of the entire ring and the 
three-dimensional structure resulting from the interaction. I n  other cases we observe 
the internal structure of the interaction in a cross-sectional plane using laser induced 
fluorescence (LIF) with a weak aqueous solution of disodium fluorescein dye for the 
ring fluid in conjunction with laser sheet illumination from a 5 W argon ion laser. In  
such cases, the heavy fluid contains a weak aqueous solution of Rhodamine B to 
allow simultaneous observation of the interface displacement. The ring motion and 
its interaction with the fluid interface are recorded with a motor driven 35 mm still 
camera a t  approximately 3 frames/s and with a 16 mm pin-register high-speed cine 
camera. 

3.2. Numerical methods 
The two-dimensional numerical simulations of vortex pairs reported here use an 
efficient Vortex-in-Cell (VIC) method for stratified flows discussed in detail by 
Tryggvason (1988b). We also present a few numerical simulations of vortex rings 
which use an axisymmetric direct summation vortex-blob method. Small-scale 
stabilization, generally essential for successful simulations with an inviscid model, is 
provided by the grid in the case of the VIC method, and by the blob size in the 
axisymmetric method. As far as regularization properties are concerned, the VIC 
method is nearly identical to blob methods, as discussed by Tryggvason (1989). The 
two-dimensional calculations assume a periodic box in the horizontal direction and 
no through-flow boundary conditions for the top and bottom boundaries. In  most of 
our calculations the box is rather narrow, but some are repeated in a wider box and 
the differences discussed in $4.3. Most of the calculations are performed on a 32 x 64 
mesh. Some are repeated on a finer mesh and the differences discussed in $4.4. For 
most of the calculations reported here, we use a circular vortex sheet located 5/3 
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FIGURE 3. Test of similarity under the parameter AR, showing the interaction of a vortex ring for 
two different cases having AR = 1.20. The dimensionless times have been matched as closely as 
possible. Kote that the interaction dynamics are essentially identical for both these cases. ( a )  Early 
time. ( b )  Later time. 

radii above the density interface as the initial conditions (see first frame in figure 21). 
The vortex sheet strength is proportional to the sine of the angle measured from the 
forward stagnation point. This initially circular vortex sheet rolls up into two 
counter-rotating vortices, whose separation a is well estimated by assuming them to 
be point vortices and using the invariance of the first moment of vorticity. This gives 
a x (in) D, where D is the initial diameter of the circular vortex sheet. Note that 
symmetry is not explicitly enforced in our calculations, although in most of our 
simulations symmetry is well preserved. 

4. Results and discussion 
4.1. Test of similarity 

Before presenting detailed results documenting t,he interaction dynamics for thin 
interfaces in the Boussinesq limit over a range of values for the parameter AR, we 
first test the similarity of the flow under this parameter as discussed in $2.3. Figure 3 
shows the interaction for two different cases characterized by the same value of AR 
at  two different times. In  both cases, the interface thickness (6 /a )  < 0.04 is 
considered sufficiently thin to be viewed in the thin interface limit of $2.1, and the 
density parameter A < 0.014 is considered sufficiently small to be viewed in the 
Boussinesq limit of $2.3. The dynamics in both cases should therefore be governed 
solely by the parameter AR. Figure 3 ( a )  shows the early time development, while 
figure 3 ( b )  shows the development a t  a later time. In  the photographs on the left 
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FIGURE 4. Further test of similarity under the parameter AR, showing the interaction of a vortex 
ring for two different cases having AR = 0.025. Kote that the interaction dynamics are again 
essentially identical in these two cases, and are quite different from those seen for AR = 1.20 in 
figure 3. ( a )  Early time. (b )  Later time. 

A = 0.014 and R = 86.1, while on the right A = 0.005 and R = 253.6. In  both cases 
AR = 1.20. The straight line in each photograph shows the initial position of the 
interface. The dimensionless times (I'/a2)t" have been matched as closely as possible 
in each comparison. We postpone a detailed discussion of the interaction dynamics 
until the following section. For the purposes of this section, it is sufficient to note that 
the comparisons in figure 3 show essentially the same features for both these 
interactions. (The appearance of wave-like features on the secondary ring in the 
photographs on the left are attributed to the Reynolds number dependence of an 
instability discussed in $4.2. Note that the Reynolds numbers are not matched in 
these two cases.) A further test of similarity for AR = 0.025 is shown in figures 4(a) 
and 4(6), with direct photographs showing the case A = 0.005 and R = 5.27 on the 
left, and with cross-sectional LIF photographs showing the corresponding internal 
structure for the case A = 0.0025 and R = 10.9 on the right. The comparisons in 
figures 4(a) and 4(b)  again show that the detailed features of the interaction are 
virtually identical in both cases. Furthermore, a comparison between figures 3 and 4 
also shows that the interaction dynamics are quite different in these two cases 
owing to their different values of AR. These results confirm the similarity arguments 
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FIGURE 5 .  Photographic sequence showing vortex ring interaction for AR = 0.014 (Case 1 in 
table 1). The dark line shows the initial position of the interface. Such relatively small values ofAR 
are characterized by the ring penetrating completely through the interface and well into the 
bottom fluid. Xotice that the ring fluid is continuously stripped away a t  the sides of the crater and 
ejected back toward the top fluid. For smaller values of AR, the interaction is similar but the 
vortex penetrates further before the ring fluid is completely stripped away. 

in $2 .3  that the interaction for thin interfaces in the Boussinesq limit is determined 
by the single non-dimensional parameter AR. 

4.2. Interaction dynamics in the thin-interface limit 
In  this section, we present results from experiments and numerical simulations 
documenting the interaction dynamics for thin interfaces in the Boussinesq limit 
over a wide range of the parameter AR.  Four representative photographic sequences 
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FIGURE 6. Photographic sequence showing vortex ring interaction for AR = 0.025 (Case 2 in 
table 1) .  For this somewhat larger value of A R ,  the ring does not penetrate as far through the 
interface as in figure 5. Notice the formation of secondary vortices as fluid is ejected back by 
baroclinically generated vorticity and t,he associated development of an intricate ' crown ' structure 
in the backflow. 

Case 

1 
2 
3 
4 

5 
6 
7 
8 

P2IP1 
1.0020 
1.0100 
1.0100 
1.0100 

1.0025 
1.0050 
1.0100 
1.0100 

r 
92 cm2/s 

154 cmz/s 
74 cmz/s 
22 cm2/s 

110 cm2/s 
108 cmz/s 
74 cm2/s 
22 cm2/s 

A 

0.0010 
0.0050 
0.0050 
0.0050 
0.0012 
0.0025 
0.0050 
0.0050 

R 
13.9 
5.0 

21.5 
238.7 

9.7 
10.1 
21 .5 

238.7 

AR 

0.014 
0.025 
0.108 
1.19 

0.012 
0.025 
0.108 
1.19 

TABLE 1 .  Experimental conditions for figures 5-12. 
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FIGITRE 7 .  Photographic sequence showing vortex ring interaction for AR = 0.108 (Case 3 in 
table 1). For this value ofAR the interaction is significantly different from that in figure 6, although 
there is still some penetration of the interface. Secondary and tertiary rings form from 
baroclinically generated vorticity, but these now orbit around the original ring. Kotice the 
development of a wavy instability in the secondary ring as it is compressionally strained. 

showing results from laboratory experiments for the interaction of a vortex ring with 
such a density interface are given in figures 5-8, corresponding to the conditions for 
cases 1 4  listed in Table 1.  These span nearly two orders of magnitude in the 
parameter AR. Cross-sectional photographic sequences showing the internal 
structure for each of these values of AR, corresponding to the conditions listed for 
cases 5-8 in table 1,  are presented in figures 9-12. 

The typical evolution for a relatively small value of AR is shown by the cases in 
figures 5 and 9. The ring can be seen to penetrate the interface completely, pushing 
an increasingly thinner layer of light fluid ahead of i t  near the forward stagnation 
point. As the interface separating the light and heavy fluids is deformed, the 
baroclinic mechanism generates vorticity along the interface with a sense that 
opposes the downward motion of the ring. (This is simply the buoyancy body force 
seen from the point of view of vorticity.) The opposing action of this interfacial 
vorticity brings the outermost layer of fluid moving with the ring to rest and expels 
it back into t,he light fluid, accompanied by heavy fluid which ‘splashes ’ upwards 
from the other side of the interface. This in turn brings a fresh layer of ring fluid and 
heavy fluid into contact at the interface, and in turn continues the baroclinic 
generation a t  the interface and subsequent expulsion of the adjacent light and heavy 
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FIGURE 8. Photographic sequence showing vortex ring interaction for AR = 1.19 (Case 4 in 
table 1). Such relatively large values of A R  are characterized by essentially no penetration of the 
vortex through the interface, and the interaction is basically similar to that in figure 7 .  A t  this 
value the transition to this type of interaction is complete; increasing AR even further shows 
virtually the same interaction. (Note that this sequence has been compressed in time by a factor 
of two to allow the later stages of development to be shown.) Compare also with figure 26. 

fluid layers into the light fluid. Note that, rather than the ring simply rebounding 
from the interface and more or less retaining its shape, this process by which ring 
fluid is expelled back into the light fluid may be likened more to peeling back 
successive layers of an onion. This continues until all of the original ring fluid is 
ejected back into the light fluid in a thin continuous sheet along with the 
accompanying heavy fluid. During this process, the vortices themselves are actually 
pushed towards each other and the vortex speed remains large until the very end, 
although the amount of downward going fluid becomes less and less. (This is 
somewhat reminiscent of Maxworthy’s (1977) observation of a decrease in size 
followed by eventual collapse of a turbulent vortex ring moving downward through 
a weak continuous density gradient.) The interfacial vortical sheet in the backflow 
forms a jet that is itself Kelvin-Helmholtz unstable and develops wavy instabilities. 
This can be seen, for example, in figures 6 and 10. These instabilities roll up to form 
distinct vortical structures, having the opposite sense of circulation as the original 
ring, which propagate back into the light fluid. The subsequent development of the 
backflow into largescale Kelvin-Helmholtz ‘billows ’ is clearly visible in these 
sequences. The combined effect forms a fairly spectacular ‘crown’ in which the ring 
fluid, the light fluid and the heavy fluid are all intertwined. Note that many of these 
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FIGURE 1 1 .  Cross-sectional (LIF) photographic sequence showing vortex ring interaction for 
AR = 0.108 (Case 7 in table 1). Notice the formation of secondary and tertiary vortex rings which 
orbit around the original ring. Compare also with figure 7 .  

features can be identified in the sequences in figures 5-8 and 9-12 for which the 
parameter AR is relatively small. 

As AR increases, however, the interaction is characterized less and less by this 
penetration and peeling process and its accompanying crown formation in the 
resulting backflow. Instead, a distinctly different type of interaction begins to 
dominate. 

The sequences in figures 8 and 12, with AR = 1.19, demonstrate the more typical 
cvolution for relatively large values of AR. In such cases, as suggested by the 
arguments in $2.2, the ring barely penetrates into the heavy fluid and the interface 
remains nearly flat, The dyed fluid boundary shows that baroclinically generated 
vorticity with the opposing sense of circulation is swept radially outward along the 
interface and then up along the sides of the ring. This interfacial vorticity rolls up to 
form a second axisymmetric vortex ring directly outside and slightly behind the 
original ring with the opposite sense of circulation as the original ring. Their mutual 
induction causes the two ring cores to  orbit around one another, with the original 
ring increasing in diameter while the diameter of the secondary ring decreases. As a 
consequence, the two rings are subjected, respectively, to extensional and 
Compressional straining along their azimuthal directions. The destabilizing effect of 
the compressional strain eventually leads to the development of a wavy structure in 
the secondary ring suggestive of a Widnall-like instability (Widnall & Sullivan 1973 ; 
Widnall et al. 1974) modified here by the presence of azimuthal strain. The onset of 
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FIGURE 12. Cross-sectional (LIF) photographic sequence showing vortex ring interaction for 
AR = 1.19 (Case 8 in table 1). Although the interface remains nominally flat, baroclinic generation 
remains present and continues to form secondary and tertiary vortex rings. Compare also with 
figures 8 and 27. 

this instability in the secondary ring exhibits a dependence on the Reynolds number 
( I ' / v )  of the original ring, though this dependence has not been investigated in any 
detail here. Such a Reynolds-number effect is, however, consistent with instability 
observations by Krutzsch (1939) and analyses by Widnall & Sullivan (1973) and 
Saffman (1978) for individual vortex rings. As a consequence, for describing those 
aspects of the interaction dynamics associated with this instability, the Reynolds 
number enters as a second similarity parameter in addition to AR.  Note also that the 
extensional strain in the original vortex ring renders it stable. The amplitude of the 
secondary ring instability continues to increase while a t  the same time a third vortex 
ring is forming from baroclinically generated vorticity carried away from the 
interface by the original ring. The secondary ring continues to orbit around 
the original ring and eventually lies completely within it. The instability in the 
secondary ring develops to quite large amplitude but retains a very nearly periodic 
structure. The third ring undergoes an evolution very similar to  that of the secondary 
ring. Note that the original ring has remained quite axisymmetric throughout this 
entire process. In  some cases, even a fourth ring can be seen to form from vorticity 
generated at the interface. Dissipation associated with the diffusion of vorticity slows 
this process as time progresses, and appears to place a limit on the number of rings 
that will ultimately form in a given case. Moreover, minute imperfections in the 
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j (ii) 

vi) 

iii) 

vii) 

iv) 

viii) 

FIQURE 13. Computational sequence showing vortex pair interaction for AR = 0. In  this case the 
interface is simply a passive line of markers. The computations use a VIC-based method for 
stratified flow on a 32 x 64 grid. The frames shown are a t  non-dimensional times of (i) t = 9.0, 
(ii) 12.6, (iii) 16.2, (iv) 19.8, (v) 23.4, (vi) 30.6, (vii) 34.2, and (viii) 37.8. The grid and the times 
shown are the same in figures 13-18. 

symmetry can become evident during these very late stages of the interaction, and 
can grow to eventually destroy the overall symmetry and accelerate the dissipative 
process. 

These two types of interactions appear to be limiting cases for the dynamics of 
small and large values of AR, respectively. For intermediate values of AR, features 
of both of these types of interactions can be seen in varying degrees. Note also that 
the timescale for each of these interactions is observed to correlate well with ( a 2 / r ) ,  
as presumed by the similarity arguments in $2. For example, the differing circulations 
for cases 1 and 5 should render the duration of the interaction in figure 5 longer than 
that in figure 9 by the factor 1.20. Indeed, the five time intervals between figures 5 ( c )  
and 5 (h)  correspond roughly to the four intervals between figures 9 (d )  and 9 (h) .  On 
the other hand, the interaction in figure 6 should occur on a timescale shorter than 
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FIGURE 14. Computational sequence showing vortex pair interaction for AR = 0.005, 
corresponding to a relatively strong vortex encountering a relatively weak interface. 

that in figure 10 by the factor 0.70, and in this case the four time intervals in figures 
6 (c)-6 (9)  correspond approximately to the five intervals between figures 10 ( c )  and 
10 (h).  More accurate comparisons afforded by cine photography verify this 
timescaling to greater precision. 

The sequences in figures 13-18 show results from inviscid numerical simulations 
for the interaction of a planar vortex pair with a thin density interface. We begin 
with the sequence in figure 13, in which AR = 0 so that there is no density jump 
across the interface. The interface is therefore just a passive line of markers and has 
no dynamical significance whatsoever for the evolution. As we expect, after the 
vortex sheet has rolled up, the vortex pair propagates through the interface with 
constant speed and separation. The separation is about what the simple arguments 
in $3.2 had suggested, but the speed is somewhat smaller. This is to be expected, since 
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viii) 

FIGURE 15. Computational sequence showing vortex pair interaction for A R  = 0.01, corresponding 
to a slightly weaker vortex or slightly stronger interface than in figure 14. Compare also with 
figures 5 and 9, showing experimental results for vortex ring interaction. 

both the finite area of the resulting vortex and the sides of the periodic box affect the 
motion in this way. In  the last frame of this sequence the back side of the vortex has 
shed some fluid, presumably owing to the fact that the rear stagnation point has 
converging streamlines and is therefore unstable to  small perturbations. 

For the sequences shown in figures 14-18, the value of AR increases successively 
from 0.005 to 0.1. Perhaps the most striking feature evident in this succession is that 
the resulting interaction dynamics show a remarkable similarity to those observed in 
the laboratory experiments for vortex rings. This is true despite the rather obvious 
differences between these planar vortex pairs and the axisymmetric vortex rings, and 
the further difference that these simulations are inviscid. Of course, numerical 
differences in the precise value ofAR associated with any particular set of interaction 
dynamics are to be expected. 
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FIGURE 16. Computational sequence showing vortex pair interaction for AR = 0.02. The vortex is 
somewhat weaker, or the interface somewhat stronger, than in figure 15. Compare also with 
figures 6 and 10. 

The simulations show that, for relatively small values of AR, the vortex centres 
move closer together as the vortex penetrates the interface, and the vortex speed 
remains nearly constant as indicated in figure 19, where we show the depth of 
penetration versus time. This is presumably due, in part, to the fact that although 
the baroclinic vorticity along the interface will counteract the downward motion, it 
also pushes the vortices closer together and their mutual interaction is therefore 
stronger. The actual amount of fluid that continues to move with the vortex 
decreases with time as fluid carried by the vortex is pushed back by baroclinically 
generated vorticity on the interface. In this way, the vortex pair is stripped of its 
accompanying relatively low vorticity fluid as it propagates downward. This fluid is 
ejected back toward the light fluid. Heavy fluid also splashes upward as a result of 
vorticity in the backflow. This backflow forms a two-dimensional jet which is 
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FIQURE 17. Computational sequence showing vortex pair interaction for AR = 0.03, corresponding 
to a comparatively weaker vortex encountering a comparatively stronger interface than in 
figure 16. Compare also with figures 7 and 11. 

Kelvin-Helmholtz unstable, much as was seen for the axisymmetric case. As this 
backflow jet enters the region occupied by the light fluid i t  is pushed sideways by the 
baroclinic vorticity, forming large vortical structures with the opposing sense of 
circulation to  the original vortex pair, which then propagate upwards into the light 
fluid. As A R  is gradually increased, the evolution is similar although the original 
vortex pair loses accompanying fluid faster and the Kelvin-Helmholtz instability of 
the backflow jet develops more rapidly. As a result there is more fluid in the crown 
over the time span shown here, and the heavier fluid has splashed higher. 

Once A R  becomes relatively large, a major difference in the evolution is that the 
downward motion of the vortices is stopped about when they are at the interface, as 
was also seen for the vortex rings. For example, in figures 16 and 17 the fluid carried 
with the vortices still penetrates the heavier fluid somewhat and is then thrown back, 
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FIGURE 18. Computational sequence showing vortex pair interaction for AR = 0.10. In  this case, 
the vortex barely penetrates the interface. Compare also with figures 8 and 12. Kote that only the 
first four times are shown. The longer time development for a larger computational box is shown 
in figure 27. 

A R  

-2 - 

- 3  - 

- 4  - 
I I I 

0 5 10 15 20 25 30 35 40 
Time 

FIGURE 19. Dimensionless penetration depth (centreline displacement of interface) versus 
dimensionless time from the numerical simulations in figures 13-18. Notice that for AR < 0.01 the 
vortices penetrate deep into the bottom fluid, while for AR > 0.02 there is very little penetration. 

but in figure 18 there is no longer any penetration to  speak of. This can be 
quantitatively seen in figure 19 and in somewhat different form in figure 20, where 
we show the penetration depth as a function of AR for two different values of the 
non-dimensional time obtained from these simulations. These results reinforce our 
notion of a transition from one characteristic set of interaction dynamics to another 
as AR increases. Note that for AR c 0.01, the vortices propagate through the 
interface and their speed is not significantly reduced over the time span of the 
simulation, while for AR > 0.02, there is little penetration of the interface. The 
AR = 0.015 case, shown in detail in figure 21, lies right in the transition range. In  this 
case, at about t = 27, the downmost part of the penetration is formed by light fluid 
carried along in front of the vortex pair. As time progresses, the interfacial vorticity 
strips this fluid away and ejects it back into the light fluid, thus slowing the rate of 
penetration for this value of AR in figure 20. At larger times, however, the vortex 
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FIGURE 20. Penetration depth versus similarity parameter AR a t  two different dimensionless 
times. Sot ice  t h e  relatively sharp transition from strong dependence on AR to  relatively weak 
dependence. 

pair can be seen in figure 21 to catch up with the interface and again increases the rate 
of penetration, as evidenced in figure 20. For even larger values of AR, as in figures 
17 and 18, the original vortices now separate slightly and two distinctly different sets 
of secondary vortices form. The first set is similar to the ones in figure 16 to the 
extent that they form above the original vortex pair, but the second set forms below 
the original pair and is then lifted up outside the original pair a t  the same time as the 
first set is drawn down between the original vortices. As a result, there is no 
significant crown formation in figure 17. In  figure 18, this transition is essentially 
completed. The original vortex pair separates as it hits the interface and the 
secondary vortices form below the original pair and orbit around them, eventually 
being drawn down between them. The evolution for large AR is also quite similar to 
that obscrvcd cxperimentally for vortex rings in figurc 5-12. 

4.3. Effects of computational boundaries 
It is worth commenting a t  this point that the width of the periodic computational 
box in figures 17 and 18 appears rather narrow in comparison with the lateral extent 
of the interaction, Although such periodic boundaries simulate the influence of 
straight sidcwalls on the interaction, thc principal interest here is in studying the 
interaction in an essentially unbounded domain. This suggests that the computations 
might no longer accurately simulate the interaction in an infinite space, since the 
primary vortices might be significantly influenced by their counterparts in the next 
period and thereby lifted upward and away from the interface to a greater extent 
than in an infinite domain. Note that the present choice of box size is largely a matter 
of convenience, since the resulting computations proceed much faster than if a large 
amount of relatively inactive fluid were included. It is therefore of interest to 
examine the extent to which the results change as the width of the computational 
domain is increased. 

Figure 22 compares the large-amplitude stage of the interaction for AR = 0.015, 
shown previously in figure 21, with another simulation having the same AR and 
identical initial conditions but with a computational box twice as wide. The principal 
apparent diffcrencc is that, as expected, the interface everywhere outside the region 
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FIGURE 2 2 .  Effect of periodic box width on computed vortex pair interaction for AR = 0.015. 
(a) wider box; ( b )  narrow box. Notice that ,  as expected, the vertical displacement of the interface 
due to  the ‘crater’ formed by the vortex is more pronounced in the narrow box. Otherwise, the 
effects of box size are minimal. 

FIGURE 23. Effect of periodic box width on vortex pair interaction for AR = 0.03. (a) Wider box; 
(b )  narrow box. The overall spreading of the ‘crown’ is slightly larger in the wider box, but even 
in this extreme case the effects of the box size are minimal. 

of interaction has been raised by the displacement effect of the penetration ‘ crater ’. 
However, the penetration depth relative to the interface is the same in both cases. 
Moreover, this displacement effect would vanish as the penetration depth goes to 
zero for large AR. A similar comparison at later time for AR = 0.03, shown 
previously in figure 17, is given in figure 23. Again there is very little apparent 
difference between the two cases. This is true despite the fact that  the backflow 
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almost reaches the sides of the narrower box, and can be attributed to the relatively 
small circulation associated with the backflow. There are, however, some slight 
differences discernible. For example, the lateral extent of the vortex system is 
somewhat smaller. However, even in this extreme case, the minor differences 
discernible between the results obtained in the narrow and wide boxes are indeed 
small in comparison with the very large differences apparent among the results for 
differing values of AR in figures 13-18. We can conclude from this that, in all of these 
cases, our relatively narrow computational box correctly captures the main features 
of the interaction dynamics in an infinite domain. 

4.4. Resolution effects 
It is also appropriate a t  this point to examine the dependence of the numerical 
simulations on the computational mesh size. In  many problems commonly solved by 
a discrete approximation method, the evaluation of accuracy by grid refinements is 
a relatively straightforward process. However, additional complications arise when 
an inviscid model is used to simulate a highly unstable process. In  its purest form, 
an inviscid model is scale invariant and simple scaling shows that a small disturbance 
will have a growth rate that  increases with its wavenumber. This short-scale 
instability, and its affect on the development of small-scale motions, will be strongly 
affected by any stabilizing mechanisms introduced in the computational method. As 
a result, the relevance of any simulation involving such a stabilizing mechanism 
depends on the extent to which the precise structure of the small-scale motions 
influences the global solution. Generally, a change in the small-scale stabilization 
mechanism produces two effects. First, for the roll-up of vortical structures, both the 
number of turns and the ‘fineness’ of the roll-up increase as the scale of the 
regularization in the numerical method is decreased. The convergence of simulations 
for a single vortex roll-up as the regularization scale is reduced is relatively well 
understood for vortex blob methods (Krasny 1986) and for the present vortex-in-cell 
method (e.g. Tryggvason 1988b). Secondly, for highly unstable parts of the interface, 
as the regularization scale is decreased the wavelength of small-scale instabilities also 
decreases. The second effect is potentially more troublesome, although in the case of 
Kelvin-Helmholtz instability small-scale instabilities usually amalgamate to form a 
resulting large-scale structure quite similar to that which would have formed from 
an initially longer-wave instability. However, sometimes such short-scale instabilities 
are an entirely different solution branch, triggered by round-off errors (Krasny 1986) 
and should therefore be eliminated in convergence studies, whereas in other cases it 
appears natural to expect instabilities of as high a wavenumber as the small-scale 
regularization will allow. 

To investigate the effects of grid refinements on our results, we performed 
simulations with AR = 0.03 and the same initial conditions on a 322 mesh and on a 
642 mesh. The results are compared in figure 24, where the non-dimensional times are 
approximately the same for each pair of frames. Note that the large-scale features are 
quite similar. As is to be expected with increasing time, differences in the 
development of small-scale features become more apparent. The principal effect of 
the refined grid is to increase the amount of roll-up in the vortex centre. The 
subsequent motion of the vortex pair as well as the deformation of the interface and 
the basic pattern of the backflow are much less affected. The major differences lie in 
the higher growth rates for the Kelvin-Helmholtz instability in the backflow, which 
lead to earlier roll-up of vortex structures as well as the development of finer scales 
in the backflow, which have not developed on the coarser grid. Nevertheless, even a t  

2.2 
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the longest time shown, the differences discernible are quite small in contrast to those 
apparent from a comparison in figures 13-18 among differing values of AR. We can 
conclude that the large-scale features in these numerical calculations appear to 
simulate accurately the interaction dynamics and will not change appreciably with 
further grid refinements. However, there are at least some fine-scale details of the 
simulations that must be viewed as being specific to the particular choice of grid size 
used here. 

4.5. Effects of core structure 
The initial condition for all the numerical simulations described so far were taken, 
more or less arbitrarily, as described in $3.2. This study has not addressed the effects 
of the initial condition on details of the roll-up process, and in general i t  is not known 
how the structure of the resulting vortex depends on the initial vorticity distribution. 
However, since for a fixed circulation the kinetic energy of a vortex depends on its 
core diameter, and the interactions studied here involve an interchange of kinetic 
and potential energy, we expect that  the core size and structure may have some effect 
on the interaction. Since the effective core size may vary according to the way in 
which the vortex pair was generated, it is of some importance to understand the 
sensitivity of the solution to changes in the core size. 

The interaction for AR = 0.015, shown previously in figure 21, is shown a t  the 
same times in figure 25 for vortices with uniform vorticity cores, called Finite Area 
Vortex Regions (FAVR) by Zabusky (e.g. Deem & Zabusky 1978). The initial core 
diameter is 0.42a in figure 25 ( a )  and 0.85a in figure 25 ( b ) .  Note that the development 
in the first frame is nearly the same in both cases, and is quite similar to the 
corresponding frame in figure 21. However, a t  later times there are significant 
differences. For example, in figure 25 ( a ) ,  where the core diameter is small, none of the 
vortical fluid is torn away from the vortex pair after it penetrates through the 
interface. As a result the circulation remains large and, as the cores are pushed 
together, their speed and depth of penetration becomes large. This suggests that for 
zero core size, or point vortices, the vortices may eventually come arbitrarily close 
together and thus reach arbitrarily high velocities. Whether such a singularity will 
appear in a finite time is not known. On the other hand, for the larger core size in 
figure 25(6), the evolution is quite different and remains more like that in figure 21. 
A significant amount of the vortical fluid is stripped away from the vortex pair and 
ejected back, thus reducing the circulation of the remaining downward-moving 
vortex. The development of the backflow jet also more nearly resembles that in 
figure 21. 

These results demonstrate that  the core size of the vortices can have a significant 
influence on the evolution. However, further calculations show that varying AR for 
a given core size still leads to a transition between two limiting types of interactions 
for small and large values of AR. 

4.6. Interaction dynamics in the limit AR + 00 

The observation in $4.2 that for large values of AR, as shown in figures 8 and 12 and 
in figure 18, the vortex barely penetrates the interface suggests that  under these 
conditions the interface acts somewhat like an immovable boundary to  the vortex. 
Indeed, as AR+ 00 the velocity component normal to the interface must be 
zero owing to the interface remaining nominally flat (i.e. i ixj+O in (8) while 
ARiixj+constant, as discussed in $2.2). This motivated us to examine the 
interaction of a vortex ring with a solid wall. The resulting interaction dynamics are 
shown in the sequence in figure 26. In  this case, the ring circulation is 74 cm2/s and 
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FIGURE 26. Photographic sequence showing the interaction of a vortex ring with a solid wall, giving 
simultaneous side and bottom views. Although the timescales are different, notice the similarity 
with the interaction at a density interface for large AR shown in figure 8. 
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FIGURE 27. Computa ional sequence showing vortex pair interaction for AR = 0. 0 in a wide 
computational box. Kotice that, as the vortex pair reaches the interface, it pulls up part of the 
vortex sheet on the interface, which then rolls up to form a secondary vortex with the opposite 
circulation. 

simultaneous side and bottom views of the interaction at a transparent wall are 
recorded. Essentially the same observations of vortex ring interaction with a solid 
wall have very recently been reported by Walker et al. (1987). Such observations 
have also been presented by Cerra & Smith (1983), and can be traced a t  least as far 
back as Magarvey & MacLatchey (1964b). Harvey & Perry (1971), Boldes & Ferreri 
(1973) and Barker & Crow (1977) also give some results for the interaction of a vortex 
with a solid wall. 

Perhaps the most striking feature of the evolution in the sequence in figure 26 is 
how closely it resembles the interaction with the fluid interface for the relatively 
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FIGURE 28. Computed trajectories of the primary vortices from the simulations in figures 21 and 
27. Kotice that for A R  = 0.015 the vortex penetrates the interface and the cores are pushed 
together. For AR = 0.1, the vortex cores spread and rebound slightly. The trajectory for large AR 
can be compared with figure 11 of Walker et al. (1987) for the solid-wall case. 

large value of AR in figures 8 and 12. In  both cases, vorticity a t  the interface is swept 
up by the ring and forms a secondary vortex ring with the opposite sense of 
circulation. It is important to bear in mind that in figures 8 and 12 the vorticity is 
baroclinically generated at the interface, while in figure 26 it is generated as a result 
of the no-slip condition a t  the wall. The secondary ring in figure 26 orbits around and 
inside the original ring, and undergoes a similar Widnall-like instability as was noted 
in $4.2. The bottom view in the last photograph of this sequence clearly shows nine 
distinct azimuthal waves on the secondary ring after it has orbited to lie entirely 
inside the original ring. A third vortex ring can also be seen forming from interfacial 
vorticity, which follows a similar evolution as the secondary ring. Indeed, the entire 
interaction very nearly resembles that a t  a density interface for large values of AR. 
This is true despite the apparent difference in the mechanism by which secondary 
vorticity is generated. 

In  figure 26, we see a slight rebounding of the vortex from the wall, as was noted 
by Walker et al. (1987). This rebounding effect can also be seen in the interaction of 
a vortex a t  a density interface for large AR, as demonstrated in figure 27 where we 
show the long-time evolution in a wide computational box for the case AR = 0.1. The 
computed trajectory of the original vortex is shown in figure 28, which also gives the 
trajectory for AR = 0.015 from figure 21 for comparison. Note that, for the smaller 
value of AR, this figure clearly shows how the vortices are pushed together as they 
penetrate the interface. For the larger value of AR, the generation of secondary 
vortices from interfacial vorticity and their subsequent interaction with the original 
vortex causes the original vortex to rebound. Note that diffusion of vorticity from 
the interface is not essential for this process. Even if the fluid were inviscid, as is the 
case in these numerical simulations, if the original vortex can deform the interface, 
then the vortex sheet bound to the interface can be swept up to form secondary 
vortices and produce the subsequent rebounding of the original vortex when AR is 
large. This will remain true except for the interaction with a solid wall, in which case 
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FIGURE 29. Computed vortex pair interaction for finite density jump A = 0.5, AR = 0.015. Vortex 
propagates downwards through the light (top) fluid into the heavy (bottom) fluid. Compare with 
figure 21, which shows the same AR but for the Boussinesq limit A+O, to see effects of the finite 
density jump. Pu’otice that  the penetration is reduced. Compare also with figure 30. 

the vortex sheet is manifestly flat and cannot be deformed into secondary vortices 
unless viscosity is present to allow vorticity diffusion away from the wall. The 
resulting interaction a t  the wall is quite different from the classical potential flow 
result obtained by replacing the wall with an image vortex. 

4.7. Finite density jump 
Only in the limit of weak interface strength is the interaction determined by the one 
similarity parameter AR. Furthermore, it is only in this Boussinesq limit that the 
interaction is symmetric with respect to the initial location and direction of 
propagation of the vortices. For larger density jumps, the density parameter A in ( 5 )  
enters as an independent similarity parameter. 

To investigate the effect of A on the resulting interaction dynamics we repeated 
the case AR = 0.015, shown previously for A+O in figure 21, with the same initial 
conditions but with A = 0.5, so that the bottom fluid is now three times more dense 
than the top fluid. The resulting dynamics are shown in figure 29. A comparison of 
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FIGURE 30. Computed vortex pair interaction for finite density jump A = 0.5, AR = 0.015. Similar 
to figure 29, but now the vortex propagates upward through the heavy (bottom) fluid into the 
light (top) fluid. Notice that the penetration is now enhanced in comparison with figure 21. Also, 
since the symmetry of the Boussinesq limit is no longer valid when the density jump is non- 
infinitesimal, note the loss of symmetry by comparing with figure 29. 

these results shows that the relatively large density jump significantly affects the 
evolution. For A = 0.5 in figure 29, the vortex penetrates the interface considerably 
less and the backflow has a very different structure to that in figure 21. 

To demonstrate the loss of inversion symmetry for such finite density jumps, 
figure 30 shows a similar case to figure 29, namely AR = 0.015 with the bottom fluid 
three times heavier than the top fluid, but now the vortex propagates upward from the 
heavy fluid into the light fluid. The loss of symmetry with respect to the light and 
heavy fluid locations is apparent in these results. The results suggest further that, 
when the vortex propagates from the heavier toward the lighter fluid, it penetrates 
through the interface considerably more than in figure 29. Note also that the 
Kelvin-Helmholtz instability of the backflow jet is now much less pronounced than 
in figure 21, 
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FIGVRE 31. Photographic sequence showing the interaction of a vortex ring with a thick density 
interface ( S / a )  = 0.5 and AR = 0.22, giving (a /S)AR = 0.44. Compare with figure 32 to see the 
similarity in the stretched coordinate y / (S /a ) .  Note tha t  the timescales differ by a factor of d2. 

4.8. Thick interfaces 
When the density interface is still sufficiently weak to be viewed in the Boussinesq 
limit A --f 0 but the interface thickness (&/a) is no longer small then from (3), for any 
particular density gradient profile f [ y / ( S / a ) ] ,  the interaction should be governed by 
the similarity parameter ( a / S ) A R ,  and two cases with the same value of this 
similarity parameter should then be identical when viewed in the stretched 
coordinate y / (S /a ) .  The sequences in figures 31 and 32 show the interaction for two 
different cases in which the interface thickness 6 is comparable to the ring diameter 
a. In  figure 31, (6 /a )  z 0.5, A = 0.0055 and R = 40.5, while in figure 32 (&/a )  z 1.0, 
A = 0.0055 and R = 80.1, so that in both cases ( a / 6 ) A R  = 0.44. The solid line gives 
the initial position from which the interface diffused to its final thickness. The 
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FIGURE 32. Photographic sequence showing the interaction of a vortex ring with a thick density 
interface. (&/a)  = 1.0 and AR = 0.44, again giving (a /6)AR = 0.44. Compare with figure 31 to see 
the similarity in the stretched coordinate y / (& /a) .  

density gradient profile f [y/(&/a)] is essentially identical in these cases since both 
were obtained by simple diffusion from an initially thin interface. The interaction 
dynamics are indeed very nearly identical in these two cases in terms of the stretched 
coordinate y / ( 6 / a )  and the dimensionless time. Note that since the circulations differ 
by the factor 2/2, the timescales also differ by this same factor. Also, as was noted 
in $4.2, the onset of the wavy instability in the secondary ring is Reynolds-number 
dependent and thus appears at a somewhat earlier dimensionless time in figure 31 
than in figure 32. Note also that many features of the dynamics, including the 
formation and development of secondary and tertiary vortex rings from interfacial 
vorticity, are qualitatively similar to those observed for the thin interface limit in 
$4.2. The dynamics observed a t  a thick interface for a particular value of (a/&) AR 
are, however, different from those seen for the same value of AR a t  a thin interface. 
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FIGURE 33. Axisymmetric numerical simulations of a vortex ring and its interaction with a thin 
density interface in the Boussinesq limit. (a) AR = 0.04; note the similarity with the experimental 
results in figures 5 and 9;  ( b )  AR = 0.4; note the similarity with the experimental results in 
figures 8 and 12. 

5. Concluding remarks 
The experiments and numerical simulations in this study have identified the 

dynamical features of the interaction between a vortex and a density interface. The 
results have confirmed similarity arguments suggesting that, when the Reynolds 
number is large and surface tension is negligible, the interaction is governed by the 
two dimensionless parameters ( a /&)  A and R. For thin interfaces (S /a  + 0) ,  the 
interaction becomes independent of the thickness and is determined by A and R .  
Furthermore, in the Boussinesq limit A+O, the interaction is governed solely by 
their product AR and is entirely invertible with respect to the initial location and 
direction of propagation of the vortices. Comparisons of our experimental and 
numerical results show a strong similarity between the interaction dynamics for 
planar vortex pairs and axisymmetric vortex rings, and suggest that many of the 
features observed here may apply to more general types of vortical flows. 

However, our results also show some differences between the vortex ring 
experiments and the vortex pair calculations. It is natural to ask how many of these 
differences can be considered as being due to  the different geometry and how many 
are due to phenomena not captured by the essentially inviscid numerical calculations, 
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such as vorticity diffusion and generation of vorticity by viscous stress gradients in 
the density interface. In figure 33 we show cross-sectional views of typical results 
from axisymmetric numerical simulations of vortex rings encountering a thin density 
interface in the Boussinesq limit, in this case for AR = 0.04 in figure 3 3 ( a )  and 
AR = 0.4 in figure 3 3 ( b ) .  The simulations were performed using an axisymmetric 
vortex blob method, with a rather large desingularization parameter. The initial 
condition was taken as a spherical vortex sheet with the strength again varying as 
the sine of the angle from the forward stagnation point. While this is probably not 
a very realistic representation of the initial condition in the experiments, which are 
not known precisely, it is the most natural extension of our two-dimensional 
simulations. Note that the fluid bounded by the vortex sheet rolls up into a ring, but 
here some of the initial fluid and vorticity is left behind as the ring forms. Part of this 
fluid is then drawn into the ring as it propagates downwards. This shedding of some 
of the fluid in the formation process is reminiscent of the formation observed in the 
experiments. The strengths of the rings in the cases shown here were selected so that 
the two limiting types of interactions described in 54.2 could be observed. In figure 
33 ( a ) ,  the vortex ring is relatively strong in the sense that AR is rather small, while 
in figure 3 3 ( b )  the ring is comparatively weak. The resulting dynamics are quite 
similar to those observed in the experiments and in the two-dimensional simulations. 
In figure 33 ( a )  the ring penetrates the interface, its diameter decreases and some of 
the fluid is ejected back into the light fluid. In figure 3 3 ( b ) ,  however, the ring does 
not penetrate the interface but forms a secondary ring from interfacial vorticity. As 
this secondary ring and the original ring orbit around one another, note the reduction 
in cross-sectional area of the original ring as a consequence of continuity. This effect 
is, of course, not present in the two-dimensional cases. Axisymmetric simulations 
with a larger desingularization parameter show essentially the same behaviour. We 
can conclude from the agreement between our experimental and numerical results 
that many of the features of this class of interactions can be understood within the 
context of inviscid fluids, and that inviscid vortex methods can be used to accurately 
simulate many aspects of such interactions. 

One of the most surprising findings in this study was the mechanism by which the 
lighter fluid is ejected back after being carried into the heavy fluid for small values 
of AR. Rather than the vortex simply rebounding and more or less retaining its 
shape, the outer layers are instead ‘peeled’ away, leaving increasingly less of the 
innermost part of the vortex intact. This peeling is driven by baroclinically generated 
vorticity a t  the sides of the crater formed by penetration of the vortex. The resulting 
vortex sheet which is ejected back into the lighter fluid is Kelvin-Helmholtz unstable 
and organizes into concentrated vortex structures which play a strong role in the 
subsequent evolution of the backflow. In  the axisymmetric case, these vortex 
structures can undergo a Widnall-like instability driven by the destabilizing effect of 
compressional strain. Our results also show that as AR increases, the interaction 
dynamics tend towards a distinctly different limit. In  this case, the vortex essentially 
does not penetrate through the interface, and the secondary and tertiary vortices 
which form tend to orbit around the original vortex. These results also demonstrate 
that  the interaction dynamics a t  a density interface appear to become similar to the 
interaction a t  a solid wall in the limit as A + 0 and AR --z 00. 

Lastly, we note that there are several obvious extensions to the work reported 
here. Examples include the whole family of oblique interactions, including the 
interactions that can result when the vortex initially moves parallel to the interface, 
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as well as the interaction for cases where (&/a)  % 1 corresponding to a continuous 
stratification layer. 
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